Что является чувствительными элементами датчиков давления

Что является чувствительными элементами датчиков давления

Рис. 4. Схемы действия мембранных чувствительных элементов давления

Рис. 6. Схемы действия сильфонных датчиков давления Рис. 7. Схемы действия трубчатых датчиков давления

Давление. В энергетической установке судна давление измеряют в очень широком диапазоне. Воспринимают давление, как правило, упругие и эластичные ЧЭ, деформирующиеся под действием силы от давления среды. Эта сила обычно уравновешивается силой действия пружины СУ. Для измерения малых давлений применяют плоские эластичные и жесткие мембраны (рис.4,а). Эластичные мембраны изготавливают из аэростатной ткани или дюритовой резины. Ограниченно распространены жесткие мембраны, изготовленные из нержавеющей стали и бериллиевой бронзы, недостатком которых является малый диапазон перемещения. Для увеличения хода применяют мембраны с гофром, направленным вогнутостью в стороны измеряемого давления (рис. 4, б).

Увеличить усилие, развиваемое мембраной, можно применением жесткого центра (рис. 4, в).

Сильфонный датчик давления (гармониковая мембрана) представляет собой гофрированную упругую металлическую трубку, закрытую с одного торца, образующего активную площадь (рис. 6, а).

В датчике эта сила уравновешивается суммой сил упругости сильфона (за счет его собственной жесткости) и дополнительной пружины (рис. 6, б). Выходным сигналом датчика является перемещение ΔyД штока.

Сильфонные датчики применяют для измерения давления различных сред в широком диапазоне (0,01- 100) 10 5 Па. При измерении малого давления пружина может отсутствовать, в этом случае действующая сила полностью уравновешивается за счет упругости самого сильфона. Жесткость сильфона зависит от его геометрических размеров, материала, числа гофр и слоев. Для измерения высокого давления необходимо увеличить толщину стенки сильфона, что приводит к повышению его жесткости. В этом случае жесткость можно снизить, сделав сильфон двух-трехслойным в зависимости от необходимой прочности.

Манометрическая трубка, или трубка Бурдона (рис. 7, а), представляет собой упругую металлическую трубку эллиптического или прямоугольного сечения, согнутую по радиусу. К неподвижно закрепленному концу трубки подводится измеряемое давление р, которое действует на ее внутренние поверхности, имеющие разные площади, и создает усилие, направленное в сторону поверхности с большей площадью.

Это усилие уравновешивается силой упругости самой трубки. Выходной сигнал датчика в виде перемещения ΔуД свободного конца трубки пропорционален изменению давления Δр. При повышении давления трубка выпрямляется, а при снижении – сгибается.

Достоинствами трубки Бурдона являются большая механическая прочность, простота конструкции и широкий диапазон измеряемого давления при линейной характеристике, что позволяет широко использовать ее в контрольно-измерительных приборах и приборах автоматических устройств. Металлические мембраны и трубки Бурдона в рабочей зоне обладают свойствами пружин и практически не имеют остаточной деформации. Диапазон измеряемого давления на линейном участке характеристики определяется пределом упругости трубчатой пружины и зависит от конструктивных соотношений размеров и механических свойств материала трубки.

Превышение предельных значений вызывает остаточную деформацию пружины, что недопустимо в эксплуатации.

Для измерения давления до 100· 10 5 Па трубчатые пружины изготавливают из латуни или бронзы, для более высокого – из стали.

Геликоидальная пружина (рис. 7, б) представляет собой упругую металлическую трубку эллиптического сечения, закрученную по спирали. К неподвижно закрепленному концу трубки подводится измеряемое давление р. Принципы действия геликоидальной пружины и трубки Бурдона аналогичны. Выходным сигналом датчика является угловое перемещение ΔаД свободного конца трубки. Геликоидальные пружины применяют в случаях, когда требуется получить большие перемещения выходного звена датчика при малых изменениях давления.

Рис. 8. Схемы действия датчиков перепада давления

Перепад давлений. Перепад Δр = р1 – р2 часто измеряют для определения расхода жидкости или газа, а также сопротивления участка трубопровода. Для измерения малых перепадов давления (от 10 до 1600 Па) используют мембранный датчик из эластичной аэростатной ткани, дюритовой резины или фольги (рис. 8, а).

Измеряемые давления р1 и р2 подводятся к полости датчика с обеих сторон мембраны, на жестком центре которой создается усилие FЧ. пропорциональное их разности и направленное в сторону меньшего давления. Выходной шток уплотняется в корпусе сальником или сильфоном. Во втором случае приведенная активная площадь мембраны со стороны штока будет меньше на размер активной площади уплотнительного сильфона.

Сильфонный датчик перепада давления (рис. 8, б) имеет измеряемый диапазон значительно шире, чем мембранный. Состоит датчик из двух сильфонов с одинаковой активной площадью, преобразующих измеряемые давления в силы, направленные в противоположные стороны.

Разность сил, приведенная к соединительному штоку, уравновешивается силами действия пружины и упругости самих сильфонов. Выходным сигналом датчика является перемещение рычага ΔуД, пропорциональное изменению перепада давлений Δ(р1 – р2). Двухсильфонные и двухмембранные датчики обладают высокой чувствительностью из-за отсутствия сил сухого трения в уплотнениях штоков.

Из чего состоят датчики давления? Классификация по принципу действия, принцип работы каждого типа датчиков, преимущества и недостатки каждого. Также вы узнаете, на что нужно обращать внимание при выборе датчиков давления. Производители и дилеры датчиков давления.
Вы также можете посмотреть другие статьи. Например, «Датчики температуры» или «Абсолютная влажность воздуха».

Датчик давления — это устройство, в котором выходные параметры зависят от давления исследуемой среды, будь то жидкость, газ или пар. Современные системы не могут обойтись без точных приборов этого типа, они используются в системах автоматизации различных отраслей: энергетика, пищевая промышленность, нефтяная и газовая отрасль и многие-многие другие. У нас в каталоге, есть раздел датчики давления с помощью которого, вы сможете выбрать и купить нужный вам датчик.

В состав любого датчика давления входит:

  • первичный преобразователь давления с чувствительным элементом;
  • различные по конструкции корпусные детали;
  • схемы для повторной обработки сигнала.

Классификация датчиков давления по принципу действия

Оптические

Оптические датчики давления могут быть построены на двух принципах измерения: волоконно-оптическом и оптоэлектронном.

Волоконно-оптические

Волоконно-оптические датчики давления являются наиболее точными и их работа не сильно зависит от колебания температуры. Чувствительным элементом является оптический волновод. Об измеряемой величине давления в таких приборах обычно судят по изменению амплитуды и поляризации проходящего через чувствительный элемент света. Более подробно об волоконно-оптических датчиках давления можно почитать в этом PDF документе.

Оптоэлектронные

Датчики этого типа состоят из многослойных прозрачных структур. Через эту структуру пропускают свет. Один из прозрачных слоев может изменять свои параметры в зависимости от давления среды. Есть 2 параметра, которые могут изменяться: первый это показатель преломления, второй это толщина слоя. На иллюстрации показаны оба метода, изменение показателя преломления — рисунок а, изменение толщины слоя — рисунок б.

Читайте также:  Плетем из веревки своими руками

Понятно, что при изменении этих параметров будут меняться характеристики проходящего через слои света, это изменение будет регистрироваться фотоэлементом. Более подробно об оптоэлектронных датчиках давления можно почитать в этом PDF документе. К достоинствам датчика этого типа можно отнести очень высокую точность.

Магнитные

Другое название таких датчиков — индуктивные. Чувствительная часть таких датчиков состоит их Е-образной пластины, в центре которой находится катушка, и проводящей мембраны чувствительной к давлению. Мембрана располагается на небольшом расстоянии от края пластины. При подключении катушки, создается магнитный поток, который проходит через пластину, воздушный зазор и мембрану. Магнитная проницаемость зазора примерно в тысячу раз меньше магнитной проницаемости пластины и мембраны. Поэтому, даже небольшое изменение величины зазора влечет за собой заметное изменение индуктивности.

Емкостные

Имеет одну из наиболее простых конструкций. Состоит из двух плоских электродов и зазора между ними. Один из этих электродов представляет собой мембрану на которую давит измеряемое давление, вследствие, чего изменяется величина зазора. То есть, по сути, этот тип датчиков представляет собой конденсатор с изменяющейся величиной зазора. А как известно емкость конденсатора зависит от величины зазора. Емкостные датчики способны фиксировать очень маленькие изменения давления.

Ртутные

Тоже очень простой измерительный прибор. Работает по принципу сообщающихся сосудов. На один из этих сосудов давить измеряемое давление. Давление определяется по величине ртутного столба.

Пьезоэлектрические

Чувствительным элементом датчиков этого типа является пьезоэлемент — материал, выделяющий эклектический сигнал при деформации (прямой пьезоэффект). Пьезоэлемент находится в измеряемой среде, он будет выделять ток пропорциональный величине изменения давления. Так как электрический сигнал в пьезоматериале выделяется только при деформировании, а при постоянном давлении деформирование не происходит, то этот датчик пригоден только для измерения быстро меняющегося давления.

Пьезорезонансные

Этот тип тоже использует пьезоэффект, только в отличие от прошлого типа тут используется обратный пьезоэффект — изменение формы пьезоматериала в зависимости от подаваемого тока. В датчиках данного типа используется резонатор (например пластина) из пьезоматериала, на которую нанесены с двух сторон электроды. На электроды по переменно подается напряжение разного знака, таким образом пластина изгибается то в одну то в другую сторону с частотой подаваемого напряжения. Но если на эту пластину подать силу, например мембраной чувствительной к давлению, то частота колебания резонатора изменится. Частота резонатора и будет показывать величину, с которой давление давит на мембрану, а она в свою очередь давит на резонатор.

В качестве примера, на рисунке приведен пьезорезонансный датчика абсолютного давления. Он выполнен в виде герметичной камеры 1. Герметичность достигается соединением корпуса 2, основания 6 и мембраны 10, которая крепится к корпусу с помощью электронно-лучевой сварки. На основании 6 закреплены два держателя: 4 и 9. Держатель 4 крепится к основанию с помощью специально перемычки 3 и он держит силочувствительный резонатор 5. Держатель 9, установлен для крепления опорного пьезорезонатора 8.

Мембрана 10 передает усилие через втулку 13 на шарик 6, закрепленный в держателе 4. Шарик 4 передает силу давления на силочувствительный резонатор 5.

Провода 7 крепятся на основании 6 и служат для соединения резонаторов 5 и 8 с генераторами 17 и 16 Выходной сигнал абсолютного давления формируется схемой 15 из разности частот генераторов. Датчик давления помещен в активный термостат 18 с постоянной температурой 40 градусов Цельсия. Измеряемое давление подается через штуцер 12.

Резистивные

По-другому этот тип датчиков называет тензорезистивный. Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи.

На какие параметры нужно обращать внимание при покупке датчиков давления

  1. Вид давления. Очень важно понимать какой вид давления необходимо измерять. Существует 5 типов: абсолютное, дифференциальное(относительное), вакуум, избыточное, барометрическое. Для лучшего понимания разницы между ними, рекомендуем прочитать статью «виды давления».
  2. Диапазон измеряемого давления.
  3. Степенью защиты прибора. В разных отраслях использования датчиков будут разные условия эксплуатации, для которых необходимы разные степени защиты от проникновения воды и пыли. Определитесь, какую степень защиты электроприбора нужно выбрать именно вам.
  4. Наличие термокомпенсации. Температурные эффекты, такие как расширение материалов, могут наложить достаточно сильные помехи на выходные показания датчика. Если у вас происходят постоянное изменение температуры измеряемой среды, то термокомпенсация необходима. Обратите также внимание на границы температур. Например, у датчика ST250PG2BPCF есть термокомпенсация в пределах от -40 до 100 градусов Цельсия.
  5. Материал. Материал может оказать решающую роль при использовании датчика в агрессивных средах, в таком случае необходим выбор материала с высокой коррозийной стойкостью.
  6. Вид выходного сигнала. Важно определиться какой вид нужен вам. Аналоговый или цифровой? Если аналоговый, то какие диапазоны выходных сигналов и сколько проводов? Например, диапазоны могут быть 4. 20 мА.

Производители и дилеры

В нашем каталоге представлены датчики давления, которые можно приобрести у следующих производителей и дилеров: Honeywell International, Компэл, Freescale Semiconductor, Inc, Omron Electronics LLC, ST Microelectronics, BD Sensors RUS.

Если вам понравилась статья нажмите на одну из кнопок ниже

Изобретение относится к технике измерения давлений в жидкостях и газах. В чувствительный элемент, содержащий полупроводниковый кристалл с чувствительными к всестороннему сжатию резисторами (барорезисторами), дополнительно введена керамическая пластина, на периферийной части поверхности которой сформированы электроды в виде контактных площадок, а в центральной – выемка, в которой размещен кристалл, при этом омические контакты барорезисторов соединены с указанными электродами. Такое выполнение чувствительного элемента обеспечивает удобство его монтажа в корпус датчика давления. 1 з.п.ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к технике измерения давлений в диапазоне от единиц до сотен мегапаскалей в жидкостях и газах.

Практическое широкое применение полупроводниковых тензопреобразователей трансформировало современный датчик давления в прибор, состоящий из двух частей: – корпус датчика с полостью, снабженный пассивной разделительной мембраной, отделяющей полость от среды давления, и электровыводами; – чувствительный элемент – тензочувствительная полупроводниковая микроструктура, снабженная электродами и элементами крепления к корпусу датчика. Чувствительные элементы изготавливаются методами массовой микроэлектронной технологии, что обеспечивает высокую повторяемость их тензоэлектрических характеристик и низкую стоимость. Сборка же датчиков давления не предусматривает применения микроэлектронной технологии. Фирмы – изготовители датчиков давления, применяют чувствительные элементы как обычные комплектующие изделия электронной техники. Сборка датчика включает механическое соединение элемента с корпусом, электрическое соединение электродов элемента с электровыводами корпуса, заполнение полости компрессионной жидкостью и ее герметизацию.

Читайте также:  Выход обрезной доски из необрезной

Известен чувствительный элемент датчика давления, содержащий кремниевую профилированную мембрану с полупроводниковыми тензорезисторами на ее поверхности, соединенную по периферии через стеклянную пластину со штуцером, и проволочные электроды, соединенные микропроволоками с тензорезисторами [1]. Штуцер предназначен для крепления элемента к корпусу датчика, а проволочные электроды для соединения тензорезисторов с электровыводами корпуса.

Действующее давление изгибает мембрану, сопротивления тензорезисторов изменяются, по данным изменениям судят о величине давления.

Недостатком элементов [1] является узкий диапазон измерения давлений, обусловленный тем, что заданному диапазону измерения отвечает оптимальная жесткость мембраны. Превышение верхнего предела данного диапазона чревато необратимой деформацией, либо разрушением мембраны из-за больших деформаций сдвига, а снижение влечет за собой рост температурных погрешностей. Для измерения давлений широкого диапазона требуется привлечение большой номенклатуры чувствительных элементов с различной жесткостью мембран.

Известен чувствительный элемент датчика давления [2], содержащий полуизолирующий кристалл арсенида галлия с чувствительным к всестороннему сжатию пленочным резистором из твердого раствора AlGaAs (барорезистором) на его поверхности и омическими контактами к барорезистору, выполняющими одновременно роль электродов. При действии давления сопротивление барорезистора изменяется, по данному изменению судят о величине давления. Чувствительный элемент [2] предназначен для размещения в компрессионной жидкости датчика, что позволяет применять его одновременно как для измерения малых давлений (единицы мегапаскалей), так и высоких давлений (сотни мегапаскалей). Возможность измерения малых давлений обеспечивается высокой чувствительностью сопротивления AlGaAs к давлению, а высоких давлений – всесторонностью сжатия кристалла компрессионной жидкостью, когда отсутствуют разрушающие твердое тело сдвиговые деформации. Таким образом, на базе элемента [2] может быть создан датчик давления, обладающий широким диапазоном измерений.

Недостатком элемента [2] является неудобство его монтажа в корпус датчика. Дело в том, что кристалл для обеспечения всесторонности сжатия должен быть со всех сторон окружен компрессионной жидкостью. Недопустима его пайка (приклеивание) к элементам конструкции корпуса. Кристалл может удерживаться в компрессионной жидкости только микропроволоками, соединяющими омические контакты барорезистора (электроды чувствительного элемента) с электровыводами датчика. Для достижения удовлетворительной вибростойкости датчика длина микропроволок должна быть малой – сравнимой с их диаметром. Последнее условие может быть реализовано только с привлечением к монтажу элемента в корпус датчика оборудования и операций микроэлектронной технологии. При этом, разварка кристалла в подвешенном состоянии на короткие микропроволоки выходит за рамки планарной технологии, а следовательно является малопроизводительной, дорогой и неудобной.

Наиболее близким техническим решением, выбранным в качестве прототипа, является чувствительный элемент датчика давления [3]. Данный элемент содержит полупроводниковый кристалл, на поверхности которого размещены два чувствительных к всестороннему сжатию пленочных резистора (барорезистора), снабженных омическими контактами. При действии давления сопротивления барорезисторов изменяются, по данным изменениям судят о величине давления.

Наличие двух барорезисторов расширяет возможности применения чувствительного элемента. Например, данные резисторы могут быть выполнены с различающейся друг от друга чувствительностью их сопротивлений к давлению и температуре (как это сделано в примере конкретного исполнения элемента [3]). В этом случае по изменению сопротивлений обоих барорезисторов можно определять как действующее давление, так и температуру. Кроме того, при изготовлении датчика давления легко может быть сформирован барочувствительный мост Уитстона, если вне полости корпуса датчика разместить второй чувствительный элемент с барорезисторами, аналогичными внутриполостным, и соединить четыре барорезистора с электровыводами корпуса так, чтобы внутриполостные барорезисторы оказались включенными в противоположные плечи моста.

Основной недостаток элемента [3] такой же, как у элемента [2], а именно, неудобство его монтажа в корпус датчика. Для обеспечения всесторонности сжатия кристалла в датчике он должен быть со всех сторон окружен компрессионной жидкостью, что не допускает пайку (приклеивание) чувствительного элемента к корпусу. Кристалл может удерживаться в компрессионной жидкости только микропроволоками, соединяющими омические контакты барорезисторов (которые выполняют одновременно роль электродов чувствительного элемента) с электровыводами датчика. Для достижения удовлетворительной вибростойкости датчика давления длина данных микропроволок, должна быть малой – сравнимой с их диаметром. Последнее условие практически достижимо только, если при монтаже чувствительного элемента в корпус датчика используется оборудование и приемы микроэлектронной технологии. Причем разварка кристалла в подвешенном состоянии на короткие микропроволоки выходит за рамки планарной технологии, а следовательно является малопроизводительной, дорогой и неудобной.

Соединение чувствительного элемента [3] с корпусом приводит к тому, что при действии давления возникает направленная сила, прижимающая кристалл к стенке корпуса. Эта сила при больших давлениях способна вызвать микропластические деформации в кристалле, что приведет к выходу элемента из строя. Кроме того, при изменениях температуры из-за различий в коэффициентах температурного расширения материала корпуса датчика и кристалла в последнем возникают термомеханические напряжения. Эти напряжения изменяют сопротивления барорезисторов, что приводит к дополнительной температурной погрешности измерения. Таким образом, крепление элемента [3] к корпусу датчика не обеспечивает высокой надежности и точности измерения давлений.

Задачей предлагаемого изобретения является обеспечение удобства монтажа чувствительного элемента в корпус датчика давления.

В предлагаемом изобретении чувствительный элемент датчика давления содержит полупроводниковый кристалл, на поверхности которого размещены два чувствительных к всестороннему сжатию пленочных резистора (барорезистора), снабженных омическими контактами, который в отличие от прототипа дополнительно снабжен керамической пластиной, на периферийной части поверхности которой сформированы электроды в виде контактных площадок, а в центральной – выемка, в которой размещен кристалл, при этом омические контакты барорезисторов посредством микропроволок и проводящих дорожек печатного монтажа, выполненных на поверхности пластины, соединены с вышеуказанными электродами.

Предложенная конструкция чувствительного элемента удобна для монтажа в корпус датчика, поскольку керамическая пластина может быть закреплена в датчике приклейкой (пайкой) тыльной стороной к стенке корпуса, а соединение элемента с электровыводами датчика может выполняться пайкой последних с помощью паяльника к контактным площадкам керамической пластины. В смонтированном таким образом элементе кристалл оказывается окруженным компрессионной жидкостью, заполняющей зазоры между стенками выемки и поверхностью кристалла, и подвергается всестороннему сжатию, что исключает возникновение в нем при давлении анизотропных напряжений. Керамическая пластина благодаря высокой прочности на сжатие способна, в отличие от полупроводникового кристалла, выдерживать высокие давления без микроразрушений в приклеенном (припаянном) к стенке корпуса датчика состоянии.

Ортогональность ориентаций соседних микропроволок обеспечивает снижение термомеханических напряжений в кристалле, обусловленных различием коэффициентов температурного расширения керамики и кристалла, поскольку действие термомеханической силы сжатия (растяжения) на кристалл со стороны каждой микропроволоки в значительной степени компенсируется изгибом сопряженной микропроволоки и микроповоротом кристалла в окне.

Читайте также:  Стиральная машина активаторного типа с подогревом воды

В предложенном элементе кристалл методами микроэлектронной технологии фиксируется в выемке микропроволаками, соединяющими барорезисторы с прилегающими к выемке участками дорожек печатного монтажа на поверхности пластины. Высокая точность задания и поддержания размеров кристалла, выемки и мест приварки микропроволок, присущая микроэлектронной технологии, обеспечивает возможность размещения кристалла в выемке с малыми зазорами и фиксации кристалла короткими микропроволоками.

Достигаемая при этом жесткость микропроволок и тонкий слой компрессионной жидкости в зазорах препятствуют заметным перемещениям кристалла при воздействии вибраций и ударов, что обеспечивает высокую стойкость элемента к воздействию механических факторов.

При высокой теплопроводности керамики (нитрид бора, оксид алюминия, поликор и др. ), узких зазорах между стенками выемки и кристаллом, а также при соединении керамической пластины с корпусом датчика тонким теплопроводным слоем клея (припоя) обеспечивается быстрый обмен теплом между кристаллом и корпусом, что позволяет снизить адиабатическую погрешность.

Высокое электрическое сопротивление керамики обеспечивает отличную гальваническую развязку между резисторами и корпусом, что способствует повышенной стойкости датчика давления к внешним электрическим воздействиям.

На фиг. 1 изображен предлагаемый чувствительный элемент – вид сверху и в сечении А – А.

На фиг. 2 представлен вариант датчика давления с предлагаемыми чувствительными элементами.

Чувствительный элемент, представленный на фиг. 1, содержит поликоровую пластину 1 размерами 5 x 5 x 0,5 мм. В центре пластины ультразвуковой вырубкой сформирована выемка размерами 1,50,02 мм на 1,30,02 мм и глубиной 0,330,02 мм. На лицевой поверхности пластины выполнены четыре никелевых дорожки 2 и золотые контактные площадки 3 на периферийных угловых участках поверхности. В выемке размещен кристалл 4, вырезанный из технологической подложки полуизолирующего арсенида галлия толщиной 0,300,01 мм лазерным скрайбером и имеющий размеры 1,40,02 мм на 1,20,02 мм. Выбранные размеры кристалла и выемки обеспечивают размещение первого во второй с малыми зазорами. На поверхности кристалла сформированы два пленочных полосковых барорезистора 5 из твердого раствора Al0,3Ga0,7As с омическими контактами 6 из эвтектического сплава GeNiAu. Омические контакты 6 и дорожки 2 соединены золотыми микропроволоками 7 диаметром 0,1 мм. Длина микропроволок 7 от мест сварки составляет 0,2-0,3 мм, а каждая микропроволока ортогональна двум соседним микропроволокам.

Датчик давления, представленный на фиг. 2, содержит цилиндрический стальной корпус 8 с полостью, ограниченной плоской перегородкой 9 и разделительной мембраной из тонкой нержавеющей стали 10, с внешней стороны которой действует измеряемое давление. В перегородке корпуса сформированы четыре металлостеклянных гермоввода 11 с изолированными коваровыми электровыводами 12 диаметром 0,3 мм. Полость заполнена полиэтилсилаксановой жидкостью 13. К перегородке 9 посредством тонких слоев галлиевого припоя с медным порошком присоединены поликоровые пластины 1 первого и второго чувствительных элементов, при этом пластина 1 первого элемента припаяна к внутриполостной поверхности перегородки 9, а пластина 1 второго элемента – к внешней поверхности перегородки 9. Электровыводы 12 припаяны к контактным площадкам 3 чувствительных элементов так, что четыре барорезистора 5 образуют мост Уитстона, причем внутриполостные барорезисторы 5 оказываются включенными в противоположные плечи моста. С целью обеспечения малого разбаланса моста и малой зависимости разбаланса от температуры, чувствительные элементы для датчика предварительно подобраны по номиналам и температурным коэффициентам сопротивлений барорезисторов 5. Проводники 14 предназначены для соединения моста с электронной аппаратурой. Измеряемое давление через разделительную мембрану 10 передается на компрессионную жидкость 13. Компрессионная жидкость 13 всесторонне сжимает кристалл 4 первого чувствительного элемента. Сжатие кристалла приводит к изменению сопротивлений внутриполостных барорезисторов 5. Возникающий разбаланс моста несет информацию о величине давления.

Представительная выборка датчиков (фиг. 2) испытывалась на длительное воздействие статического давления 200 МПа и на воздействие 30000 циклов пульсирующего давления амплитудой 80 МПа. В пределах погрешности измерения 0,05% не замечено гистерезисных и необратимых эффектов в зависимости от напряжений разбаланса мостов от давления. Этот результат позволяет заключить, что предложенное исполнение чувствительного элемента обеспечивает всесторонность сжатия кристалла арсенида галлия в полости датчика. Выполненное нами многократное термоциклирование (сотни циклов от минус 50 до +120 o C) представительной выборки датчиков (фиг. 2) не приводит к значимым необратимым изменениям исходных разбалансов мостов и появлению гистерезисных явлений, что говорит об отсутствии в кристаллах чувствительных элементов заметных термомеханических напряжений.

Резонансная частота f колебаний кристалла (масса) на проволочных электровыводах (пружинах) может быть определена формулой [4] где E – модуль Юнга золота (80 ГПа), R – радиус проволочки (510 -5 м), m – масса кристалла (3,610 -6 кг), l – длина проволочки от мест сварки (l -4 м).

Подстановка численных значений в формулу дает f > 30 кГц.

Предельно допустимое для элемента ускорение "a", определяемое соотношением a = R 2 G/m, где G – предел прочности золота на разрыв (G100 МПа), составляет a 210 5 м сек -2 .

Приведенные расчеты подтверждают высокую стойкость датчика к механическим факторам.

Производство опытных образцов датчиков подтвердило возможность изготовления на основе предлагаемого изобретения удобных в монтаже чувствительных элементов. Результаты испытаний и расчеты показали высокую надежность и точность датчиков в широком диапазоне измерения давлений.

Все технологические операции по изготовлению кристаллов с барорезисторами и пластин с выемкой, дорожками и электродами являются групповыми (одновременно могут изготавливаться сотни изделий на единых технологических подложках керамики и арсенида галлия). Технологические операции размещения кристаллов в выемках и разварки микропроволок поддаются полной автоматизации.

Источники информации, использованные при составлении описания изобретения 1. Авт. свид. СССР N 1464055, G 01 L 9/04, опубл. 07.03.89, бюл. N 9.

2. Авт. свид. СССР N 1569616, G 01 L 9/06, опубл. 07.06.90, бюл. N 21.

3. Заявка ЕПВ N 0335793, G 01 L 9/00, опубл. 04.10.89.

4. Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. – М.: Наука, 1965.2

1. Чувствительный элемент датчика давления, содержащий полупроводниковый кристалл, на поверхности которого размещены два чувствительных к всестороннему сжатию пленочных резистора (барорезистора), снабженных омическими контактами, отличающийся тем, что элемент снабжен керамической пластиной, на периферийной части поверхности сформированы электроды в виде контактных площадок, а в центральной – выемка, в которой размещен кристалл, при этом омические контакты барорезисторов посредством микропроволок и проводящих дорожек печатного монтажа, выполненных на поверхности пластины, соединены с указанными электродами.

2. Чувствительный элемент по п.1, отличающийся тем, что микропроволоки, соединяющие омические контакты барорезисторов с дорожками печатного монтажа, расположены так, что каждая микропроволока ортогональна соседним с ней микропроволокам.

Ссылка на основную публикацию
Adblock detector