Что такое термоядерный синтез

Что такое термоядерный синтез

Управляемый термоядерный синтез (УТС) – одна из самых ожидаемых технологий, надо которой работают учёные во всём мире. Возможно, именно она раз и навсегда решит энергетическую проблему в масштабах планеты. И в разработке этой технологии одну из самых заметных ролей играет Институт ядерной физики (ИЯФ) Сибирского отделения РАН, который находится в Академгородке Новосибирска.

Что такое УТС?

Ядра всех атомов состоят из нуклонов (нейтроны и протоны). Они скреплены друг с другом силой, которая в физике называется термином «сильное взаимодействие». Причём, чем больше нуклонов в ядре, тем слабее это сильное взаимодействие.

Если объяснять «на пальцах», то термоядерный синтез – это реакция, при которой количество нуклонов в ядре атома увеличивается. Причём тут продолжает действовать закон сохранения энергии. При увеличении количества нуклонов уменьшается энергия их сильного взаимодействия, но эта энергия не исчезает в никуда – она выделяется в виде тепла.

Выходит, можно построить реактор, в котором протекает термоядерный синтез, и получать энергию – термоядерный реактор. Но для этого нужно полностью изучить природу термоядерного синтеза и научиться ей управлять. Поэтому и говорят – управляемый термоядерный синтез.

Перспективность термоядерного реактора

Термоядерный реактор имеет ряд очевидных преимуществ. Одна из них – практически бесконечное топливо: они будут работать на водороде. Топливо можно получать хоть из обычной морской воды.

Отсюда вытекают и другие плюсы. Один из важнейших – относительная радиационная безопасность. В реакторе будет находиться очень мало радиоактивных веществ. Кроме того, процессы, протекающие в реакторе, не будут слишком бурными, поэтому вероятность аварийного скачка мощности реактора минимальна. Но даже в случае взрыва реактор вряд ли будет разрушен, так что заражение значительной территории от радиоактивных выбросов будет практически исключено.

Более того, отходы термоядерного реактора будут иметь короткий период полураспада, то есть сравнительно быстро перестанут быть опасными. Кроме того, их невозможно будет использовать как компонент для взрывного устройства.

Термоядерный реактор с токамаком

Ещё до того, как в Обнинске была построена первая в мире атомная электростанция, в среде учёных уже начались разговоры о принципиально иных реакторах – термоядерных. И уже тогда стали предприниматься попытки представить, как будет выглядеть такой реактор.

В настоящий момент есть несколько разных теоретических систем устройства термоядерного реактора. Но наиболее близка к практической реализации – квазистационарная система. Она основана на тороидальной камере с магнитными катушками (сокращённо – токамак).

Токамак – это такой металлический бублик, в котором при помощи сильнейшего электромагнитного поля с безумно высокой скоростью движется плазма. Плазма разогревается до температуры где-то в миллион градусов, и начинается синтез. Остаётся только собирать полученные излишки энергии.

Когда построят термоядерный реактор?

Первый экспериментальный токамак был построен в 1954 году в Москве, в Институте атомной энергии имени Курчатова. А уже в 1968 году на токамаке Т-3 прошли первые успешные испытания: учёные смогли нагреть плазму до температуры в 5 миллионов градусов Цельсия и какое-то время её сохранять. Так было положено начало.

В настоящее время в мире построено более 300 токамаков. И если самый первый был диаметром всего 80 сантиметров, то самый современный имеет диаметр уже 16 метров. Этот современный токамак построен для экспериментального прототипа термоядерного реактора ITER (ИТЭР), который находится на юге Франции.

Строительство ИТЭРа

ИТЭР – проект международный, в нём участвуют учёные из десятков стран, включая Россию. Причём системы этого реактора моделировались и отрабатывались под руководством российского физика Василия Андреевича Глухих (кстати, выпускника Томского политеха).

Строится ИТЭР с 2013 года. Предполагаемый срок начала первых экспериментов – 2025 год.

Макет реактора ИТЭР

Сибирский вариант термоядерного реактора

Институт ядерной физики (ИЯФ) Сибирского отделения РАН– один из ключевых участников разработки ИТЭР от России. Но параллельно с работой над ИТЭР учёные из ИЯФ разрабатывают альтернативный вариант термоядерного реактора. Причём сами учёные отмечают, что их проект направлен на создание коммерчески выгодной термоядерной электростанции, в то время как проект ИТЭР преследует чисто научные цели.

Реактор, который разрабатывают в ИЯФ, работает по иной системе: не по квазистационарной, а импульсной. Эта система на сегодняшний день менее проработана теоретически, но обещает ряд преимуществ перед квазистационарной. Главное, импульсный реактор, как предполагается, будет более простым в инженерном плане, будет эффективнее использовать магнитное поле – другими словами, будет более экономичным. В теории звучит очень заманчиво, и вот сейчас в ИЯФ экспериментально проверяют эти теоретические выкладки.

В импульсной системе вместо токамака используется открытая магнитная ловушка. Концепцию этой ловушки в 1953 году впервые предложил советский физик, основатель ИЯФ Герш Будкер. В ней плазма удерживается с помощью магнитного поля в длинной трубе. ИЯФ на сегодняшний день является мировым лидером по производству открытых магнитных ловушек.

Открытая магнитная ловушка

Технологический прорыв

И одна из сложнейших задач при постройке импульсной установки – удержать плазму внутри трубки, чтобы при этом продолжался синтез. В ИЯФ разработали и построили уже целый ряд моделей открытых магнитных ловушек, в которых использовались самые разные варианты решения этой задачи. И вот, похоже, найдено окончательное решение.

Решение заключается в использовании магнитного поля, которое «закручено» в виде винта. Такое магнитное поле одновременно тянет плазму в трубке и вперёд и назад, и в итоге плазма удерживается посередине.

Схема магнитной ловушки с винтовым магнитным полем

Чтобы узнать, действительно ли это решение годится для создания полноценного термоядерного реактора, в конце 2017 года в Новосибирске была запущена экспериментальная установка СМОЛА (Спиральная Открытая Магнитная Ловушка). В данный момент ведутся эксперименты.

СМОЛА, разработанная в Институте ядерной физики Сибирского отделения РАН

Если эксперименты оправдают ожидания новосибирских физиков, то Россия, возможно, станет первой страной, в которой будет построен термоядерный реактор.

Солнце — это раскаленный газовый шар, который каждую секунду выделяет столько энергии — сколько человечеству хватило бы на миллион лет. Такой невероятный объем энергии высвобождается благодаря термоядерному синтезу и ядерным реакциям, которые происходят в его недрах уже около 5 миллиардов лет.

Что такое термоядерный синтез?

Термоядерный синтез — это процесс, в котором ядра легких атомов сливаются друг с другом образуя более тяжелые атомы. Это слияние сопровождается выделением большого количества энергии.

Еще в середине 20 века человечество хотело приручить этот источник энергии, воспроизведя технологию работы нашего Солнца. Говоря простым языком, для этого требовалось нагреть смесь определенных веществ (например, дейтерий и тритий) до температуры в 50 миллионов градусов и выше, тем самым превратив их в плазму. Такая высокая температура способна сильно разогнать легкие атомы, чтобы те преодолели «Кулоновский барьер» и сблизились на расстояние, достаточное для возникновения термоядерной реакции.

Прошло уже более 60 лет, с тех пор как впервые был применен термоядерный синтез, но мы так и не научились контролировать эту реакцию, чтобы получать из нее необходимые нам блага в виде энергии и отказаться от источников, загрязняющих нашу планету. К числу подобных источников можно отнести и современную атомную энергетику, использующую ядерную реакцию деления.

Основные опасения, по поводу современной ядерной энергетики, породили аварии в Чернобыле в 1986 году и на Фукусиме в 2011 году. В частности, катастрофа на Фукусиме разрушила миф об энергетических реакторах с нулевым риском. Но кроме значительных рисков для безопасности, эти реакторы также имеют проблемы с утилизацией отходов и перекачивают огромное количество воды. Другой важный момент заключается в том, что основным источником топлива для современных атомных реакторов служит Уран-235, запасов которого вряд ли хватит на ближайшее столетие. Именно поэтому будущее, с развитой термоядерной энергетикой, выглядит таким привлекательным.

Читайте также:  Стиральная машина канди отзывы покупателей и специалистов

Однако, в отличии от ядерной реакции деления, которая используется в современных атомных станциях, ядерный синтез оказался крепким орешком. Много десятилетий ученые со всего мира ломают головы разрабатывая технологии, для получения стабильной и безопасной реакции. Было придумано несколько видов реакторов, но ни один из них не годится для практического применения.

Термоядерный реактор

Дейтерий ( 2 H) и тритий ( 3 H) — это изотопы первого и самого легкого химического элемента — водорода, именно их комбинация зарекомендовала себя на роль источника энергии будущего (рассматриваются и другие типы реакций). При каждом слиянии дейтерия и трития образуется нейтрон и ядро гелия, а также 17,6 МэВ энергии.

Если сравнить термоядерный и ядерный реактор, то из одного килограмма исходной смеси в термоядерном реакторе будет производиться в три раза больше энергии, чем в ядерном. Для сравнения с другими источниками энергии, представьте, что 86 грамм дейтерий тритиевой смеси производит такое же количество энергии, как при сжигании 1000 тонн угля.

Но как упоминалось выше, чтобы пользоваться этой энергией, нужно разработать реактор, который бы работал стабильно и безопасно. Однако это не простая задача, потому что для удержания невероятно горячей плазмы, нужно было создать особый сосуд.

Токамак

Советские ученые предложили идею магнитного удержания плазмы в 1950, а уже в 1958 году была построена первая в мире экспериментальная термоядерная установка — «Токамак Т1». Конструкция подразумевает тороидальную камеру с магнитными катушками, в которой плазма удерживается не стенками камеры, а специально создаваемым комбинированным магнитным полем — тороидальным внешним и полоидальным полем тока, протекающим по плазменному шнуру. Концепция получилась весьма успешной, что привело к постройке порядка 300 токамаков по всему миру.

Однако из-за того, что полностью контролировать поведение плазмы ученым пока не удается — выход энергии при термоядерном синтезе получается нестабильным и неоднородным. Даже такой тугоплавкий метал, как вольфрам не выдерживает нагрузку, которую создают потоки плазмы в экспериментах, а это приводит к целому ряду дополнительных проблем, одна из них — разрушение первой стенки в токамаках.

Стелларатор

Стелларатор отличается от токамака тем, что магнитное поле для изоляции плазмы от внутренних стенок тороидальной камеры полностью создаётся внешними катушками, позволяя использовать его в непрерывном режиме. Его силовые линии подвергаются вращательному преобразованию, в результате которого эти линии многократно обходят вдоль тора и образуют систему замкнутых вложенных друг в друга тороидальных магнитных поверхностей.

Сама концепция стеллараторов возникла в середине 20 века, но существенный прогресс в их улучшении был достигнут в начале 21 века благодаря развитию компьютерных технологий, а в частности, графических программ.

В то время как токамак работает в импульсном режиме (из-за того, что там происходят срывы плазмы), стелларатор является стационарной машиной (теоретически), при условии, что там удастся реализовать стеллараторную конфигурацию.

Основным недостатком стеллараторов является их малоизученность в действии. Конструкция стелларатора оказалась настолько сложной, что уровень развития техники долгое время не позволял его построить. Не удивительно, что изучение термоядерного синтеза на стеллараторах было заброшено, в то время, как на токамаках оно не останавливалось. Вероятно, по этой причине самый масштабный проект в данной области — ITER (ИТЭР) взял за свою основу токамак, а не стелларатор.

Международный экспериментальный термоядерный реактор ITER (ИТЭР)

ИТЭР — это международный мегапроект по исследованию термоядерного синтеза, который станет самым гигантским термоядерным реактором за всю историю человечества. В его постройке участвует 35 стран, так как, еще в середине семидесятых стало ясно, что одна страна вряд ли способна решить эту проблему.

Для размещения гигантского реактора предлагались разные площадки, но в итоге «стройку века» было решено начать на юге Франции. Строительство стартовало в 2007 году, но с тех пор ИТЭР столкнулся с техническими задержками, отставанием от графика, сменой руководства и увеличением расходов, которые выросли с первоначальной оценки в пять миллиардов евро до примерно 20 миллиардов евро.

Но это не удивительно, ведь это самый дорогой и масштабный научный проект за который взялось человечество. Согласно расчетам, весить он будет как три Эйфелевых башни — 23 000 тонн, диаметр самого реактора будет достигать 20 метров в ширину и 60 метров в высоту. Объем плазмы, которую ученые планируют получать на этой установке оценивается в 840 кубических метров, что в 10 раз больше, чем на самом большом и современном токамаке, имеющемся сейчас. Термоядерная реакция в недрах токамака ИТЭР будет происходить при немыслимых 150 миллионов градусов Цельсия.

Чтобы удерживать такой объем плазмы, магнитное поле на ИТЭР будет приблизительно в 200 раз больше, чем у Земли. Таких показателей удастся достичь используя несколько сотен тонн сверхпроводников. Как уже можно понять, это ноу-хау будет использовать все передовые технологии и последние наработки достигнутые человечеством в науке.

Однако какие бы усилия не были задействованы для строительства ИТЭР, этот реактор является лишь первым шагом в термоядерное будущее. Основная причина его создания состоит в изучении поведения плазмы на сверхвысоких термоядерных температурах, и только если испытания пройдут успешно, то начнется строительство первого демонстрационного реактора. На текущий момент проект ИТЭР завершен приблизительно на 70%.

Другие разработки

Токамаки и стеллараторы не единственные в своем роде. Кроме них есть еще несколько направлений, в которых ведутся исследования термоядерного синтеза. Коротко опишем некоторые из них.

Инерциальный термоядерный синтез (ICF) — это тип исследований, посвященный изучению термоядерного синтеза, в котором предпринимаются попытки инициировать реакции слияния путем нагревания и сжатия топливной мишени (обычно в форме таблетки), которая чаще всего содержит смесь дейтерия и трития. Типичные топливные таблетки имеют размер булавочной головки и содержат около 10 миллиграммов топлива. Чаще всего, в системах ICF используется один лазер, луч которого разделяется на несколько потоков, которые впоследствии индивидуально усиливаются в триллион раз или более. Одна из последних ICF установок строится во Франции и называется Laser Mégajoule.

Магнитоинерциальное слияние (MIF) описывает класс термоядерных устройств, которые сочетают в себе аспекты термоядерного синтеза и инерциального термоядерного синтеза (ICF) в попытке снизить стоимость термоядерных устройств.

Слияние намагниченных мишеней (MTF) — это концепция термоядерного синтеза, которая сочетает в себе особенности синтеза с магнитным удержанием и синтеза с инерционным удержанием (ICF). Подобно магнитному подходу, термоядерное топливо при более низкой плотности ограничено магнитными полями и нагревается до состояния плазмы. Как и в случае инерционного подхода, плавление инициируется быстрым сжатием цели, что значительно увеличивает плотность топлива и температуру.

Пузырьковый синтез (соносинтез) — это реакция ядерного синтеза, предположительно происходящая внутри чрезвычайно больших коллапсирующих пузырьков газа, созданных в жидкости во время акустической кавитации. Исследования в данной области были окружены противоречиями, включая утверждения, что они являются мошенничеством (это привело к применению санкций в отношении Университета Пердью и некоторых его сотрудников).

Читайте также:  Воздушный теплообменник на вентиляцию

В заключение

Как только термоядерные реакторы станут реальностью, они абсолютно изменят глобальный энергетический баланс, который заложит основу для революции в области чистой энергии. Будучи источником неопасной и не нуждающейся в углероде энергии, не производящим долгоживущих радиоактивных отходов, термоядерный синтез в конечном итоге приведет к устареванию электростанций, работающих на ископаемом топливе, и ядерных установок на основе урана. Он станет источником, который сможет дать нам стабильную энергию в почти неограниченных масштабах.

Термоядерный синтез — это дорога в тупик! Будущее за холодным ядерным синтезом. А в дальнейшем и использование энергии Антимира. Звезды состоящие из антивещества излучают электронные антинейтрино. Эти частицы Антивещества несут в себе гигантскую энергию. В космосе напрямую между электронными нейтрино и антинейтрино нет аннигиляции. Не обнаружена она и вблизи атомных реакторов, где образуется огромной плотности поток электронных антинейтрино. При «распаде» нейтронов. Есть моя книга, где описаны десятки тайн природы, на которые современная наука так и не смогла найти ответов.

К сожалению, наши теоретики совершили множество ошибок, которые в процессе обучения передаются следующему поколению, как истина, по-существу происходит зомбирование, лишающее человека к самостоятельному размышлению. Пролетая сквозь грозовые облака электронные антинейтрино, увлекают за собой электроны, перемещают их из верхней части облака в нижнею. Так за счет энергии Антимира происходит электрический заряд. Только после потери скорости полета, силы инерции не препятствуют соединению электронного антинейтрино с электроном, при этом образуется отрицательный мюон. И только теперь возможна аннигиляция, пролетающего электронного нейтрино с электронным антинейтрино входящим в состав отрицательного мюона. При этом излучаются два мюонных нейтрино — носители гравитационных лучей — гравитоны. Они принимают активное участие в ядерном синтезе на звездах из вещества и антивещества. При захвате пролетающего мюонного нейтрино с энергией не менее 105 МэВ. протон превращается в нейтрон, излучает электронное нейтрино с энергией не менее 105 МэВ. Которые улетают в поисках своей половинки позитрона. В сильном гравитационном поле звезд мюоны и нейтроны стабильны, а протоны нет! Так в природе, во Вселенной за счет круговорота нейтрино, происходит медленный энергетический разряд, между звездами из вещества и антивещества, с выделением энергии. Для таких ядерных реакций не нужна высокая температура, нужно лишь сильное гравитационное поле звезды.

Что же в учебниках написано, что в состав мюона входит два нейтрино, а так как между ними нет аннигиляции, то эти нейтрино разных сортов, электронное и мюонное. Физики привыкли, что при аннигиляции излучаются только гамма-кванты. Это почему при аннигиляции положительного и гравитационного зарядов должны излучаться фотоны? Излучаются кванты гравитации мюонные нейтрино.Эти невидимки. А также, в состав мюона входит лишь одно нейтрино, в вторая античастица прилетает. Поэтому минимальная энергия, принадлежащая гравитационному заряду 105 МэВ. Он же гравитационный, он же ядерный заряд, предсказанный Х. Юкава. Нет места и свободному распаду нейтронов, они взаимодействуют с пролетающими мюонными нейтрино очень огромной энергии, и вылетающее электронное антинейтрино обладает энергией не 2 эВ, а многократно большей чем 105 МэВ. В левой части формулы мюонное нейтрино приносит энергию и импульс, а электронное антинейтрино их уносит. Не один радиоактивный распад не происходит без участия прилетающего нейтрино. Не существует в природе слабый распад, есть взаимодействия с нейтрино. Не было обнаружено не одного взаимодействия электронного антинейтрино с нейтроном. действительно, а зачем нейтрону нужен отрицательный гравитационный заряд?

Почему невозможен термоядерный синтез? Дело в том, что плазма удерживается в сильном электромагнитном поле и нагревание способствуют сильной электрической поляризации, за счет которой силы кулоновского отталкивания между атомами многократно увеличиваются. А почему мюоны являются катализатором ядерных реакций? В состав мюона входит гравитационный заряд, энергия которого 206 раз больше, чем у электрона. И сильная гравитационная поляризация многократно усиливает притяжение между атомами. На звездах также катализатором является сильное гравитационное поле. Какова природа ядерных сил? Это мощнейшее поле гравитационного магнита, совместно с электромагнитным образует квантовые уровни, в виде чередования этих двух силовых полей, как в матрешке. Наблюдается в виде спектра. Ядерные силы похожи на магнитные. При контакте между магнитами силы притяжения огромны, при удалении стремительно ослабевают. Мюон состоящий всего из двух зарядов электрического и гравитационного, уже обладает квантовыми уровнями. Положительный мюон при захвате электрона образует атом мюония, подобный водороду, но в 9 раз легче. Эти два заряда генерируют два силовых поля, электрического и гравитационного магнита. У сил гравитации все наоборот, не только одноименные гравитационные заряды притягиваются, но и одноименные полюса гравитационных магнитов притягиваются между собой, образуя магическое число два. Без этих силовых полей невозможно объяснить строение вещества. Атомы и молекулы электрически нейтральны,и не могут притягиваться между собой, поэтому молекулярные силы — это силы гравитационного притяжения. Почему атомарный водород и другие объединяются в пары, в молекулярные. Здесь одноименные полюса гравитационных магнитов притягиваются между собой, но происходит и насильственное объединение одноименных полюсов электромагнитных полей. При нагревании вещества, электроны отталкивается дальше, строятся новые квантовые уровни, силы гравитационного притяжения между молекулами ослабевают, поэтому с начало вещество превращается в жидкость, в дальнейшем в газ. Почему вещество почти невозможно сжать? Под полем гравитационного магнита, находится электромагнитное поле, где одноименные полюса отталкиваются с огромной силой. Поэтому не один атом не может находится внутри другого. Южные полюс гравитационного магнита совпадает с южным электромагнитным полюсом. А северный с северным. В общем теория огромна. В дальнейшем, при создании сильного поля гравитационного магнита, намного сильнее, чем в смерче, будут созданы ядерные установки, холодного ядерного синтеза. В смерче при вихревом вращении положительными ионами воды генерируется поле гравитационного магнита. Но лучше применять ртуть, как это описано в древних индийских трактатах. На виманах применялись гравитационные двигатели, где четко сказано, работает по принципу смерча.

Термоядерный синтез – это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез – из тяжелого изотопа водорода дейтерия образуется гелий. При этом выделяется колоссальное количество энергии. Однако на Земле люди пока не научились управлять подобными реакциями.

По разным прогнозам, основные источники электроэнергии на планете закончатся через 50-100 лет. Запасы нефти человечество исчерпает лет через 40, газа – максимум через 80, а урана – через 80-100 лет. Запасов угля может хватить лет на 400. Но использование этого органического топлива, причем в качестве основного, ставит планету за грань экологической катастрофы. Страны-участницы Киотского протокола, обсуждая проблемы выживания человечества, "угольные" выбросы поставили в разряд самых опасных факторов. Если сегодня не остановить столь нещадное загрязнение атмосферы (а именно угольные станции служат главным источником ее загрязнения, при-чем выбрасывают радиоактивных веществ в десятки раз больше, чем АЭС), ни о каких столетиях не может быть и речи. А значит, альтернативный источник энергии нам необходим уже в обозримом будущем.

И такой источник есть. Это – термоядерная энергетика, в которой ис-пользуется абсолютно нерадиоактивный дейтерий и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. И источник этот практически неисчерпаем, он основан на столкновении ядер водорода, а водород – самое распространенное вещество во Вселенной.

Читайте также:  Бензопила штиль 241 цена

Однако проблема управляемого термоядерного синтеза настолько сложна, что самостоятельно с ней не справится ни одна страна. Поэтому ми-ровое сообщество избрало самый оптимальный путь – создание проекта Международного термоядерного экспериментального реактора – ИТЭР, в кото-ром на сегодня участвуют, кроме России, США, Евросоюз, Япония, Китай и Южная Корея.

Управляемый термоядерный синтез – процесс слияния лёгких атомных ядер, происходящий с выделением энергии при высоких температурах в регулируемых, управляемых условиях. Скорости протекания термоядерных реакций малы из-за кулоновского отталкивания положительно заряженных ядер. Поэтому процесс синтеза идёт с заметной интенсивностью только меж-ду лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциально-го барьера. В природных условиях термоядерные реакции между ядрами водорода (протонами) протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет. С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно связанных ядер гелия.

Эти реакции представляют наибольший интерес для проблемы управляемого термоядерного синтеза. В особенности привлекательна вторая реакция, сопровождающаяся большим энерговыделением и протекающая со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития. С этой целью рабочая зона рассматриваемой системы может быть окружена слоем лёгкого изотопа лития, в котором будет идти процесс воспроизводства.

Вероятность (эффективное поперечное сечение) термоядерных реакций быстро возрастает с температурой, но даже в оптимальных условиях остаётся несравненно меньше эффективного сечения столкновений атомных. По этой причине реакции синтеза должны происходить в полностью ионизованной плазме, нагретой до высокой температуры, где процессы ионизации и возбуждения атомов отсутствуют и дейтон-дейтонные или дейтон-тритонные столкновения рано или поздно завершаются ядерным синтезом. Удельная мощность термоядерного реактора находится путём умножения числа ядерных реакций, происходящих ежесекундно в единице объёма рабочей зоны реактора, на энергию, выделяющуюся при каждом акте реакции.

Сооружение реактора предполагает: получение плазмы, нагретой до температур в сотни миллионов градусов; сохранение плазменной конфи-гурации в течение времени, необходимого для протекания ядерных реакций. Исследования по управляемому термоядерному синтезу ведутся в двух на-правлениях – по разработке квазистационарных систем, с одной стороны, и устройств, предельно быстродействующих, с другой.

Основополагающая идея, высказанная в 1950 в Советском Союзе и США, состоит в использовании принципа магнитной термоизоляции плазмы. Заряженные частицы, образующие плазму, находясь в магнитном поле, не могут свободно перемещаться перпендикулярно к силовым линиям поля. В результате коэффициенты диффузии и теплопроводности поперёк магнитного поля, в случае устойчивой плазмы, очень быстро убывают с возрастанием напряжённости поля и уменьшаются на 14-15 порядков величины против своего "незамагниченного" значения для плазмы с указанной выше плотностью и температурой. Таким образом, применение достаточно сильного магнитного поля в принципе открывает дорогу для проектирования реактора синтеза.

Исследования в области управляемого термоядерного синтеза с маг-нитной термоизоляцией делятся на три основных направления: открытые (или зеркальные) магнитные ловушки; замкнутые магнитные системы; уста-новки импульсного действия.

В открытых ловушках уход частиц из рабочей зоны поперёк силовых линий на стенки установки затруднён; он происходит либо в ходе процесса "замагниченной" диффузии (то есть очень медленно), либо путём перезаряд-ки на молекулах остаточного газа. Уход плазмы вдоль силовых линий также замедлен областями усиленного магнитного поля (так называемые "магнит-ными зеркалами" или "пробками"), размещенными на открытых концах ловушки. Заполнение ловушек плазмой обычно производится путём инжекции плазменных сгустков или отдельных частиц, обладающих большой энергией. Дополнительный нагрев плазмы может быть осуществлен с помощью адиабатического сжатия в нарастающем магнитном поле.

В системах замкнутого типа (токамак, стелларатор) уход частиц на стенки тороидальной установки поперёк продольного магнитного поля также затруднён и происходит за счёт замагниченной диффузии и перезарядки. На-гревание плазменного шнура в токамаке на начальных стадиях процесса осуществляется протекающим по нему кольцевым током. Однако по мере повышения температуры джоулев нагрев становится всё менее эффективным, так как сопротивление плазмы быстро падает с ростом температуры. Для нагревания плазмы свыше 10*7 К применяются методы нагрева высокочастотным электромагнитным полем и ввод энергии с помощью потоков быстрых нейтральных частиц.

В установках импульсного действия (Z-пинч и Q-пинч) нагревание плазмы и её удержание осуществляются сильными кратковременными токами, протекающими через плазму. При одновременном нарастании тока и магнитного давления плазма отжимается от стенок сосуда, чем обеспечивается её термоизоляция. Повышение температуры происходит за счёт джоулева нагрева, адиабатического сжатия плазменного шнура и, повидимому, в результате турбулентных процессов при развитии неустойчивости плазмы.

Самостоятельное направление образуют исследования горячей плазмы в высокочастотных (ВЧ) полях. Как показали опыты П. Л. Капицы, в водороде и гелии при достаточно высоком давлении удаётся получить в ВЧ полях свободно парящий плазменный шнур с электронной температурой 10*5 К. Система допускает замыкание шнура в кольцо и наложение дополнительного продольного магнитного поля.

Успешная работа любой из перечисленных установок возможна только при условии, что исходная плазменная структура оказывается макроскопически устойчивой, сохраняя заданную форму в течение всего времени, необхо-димого для протекания реакции. Кроме того, в плазме должны быть подавлены микроскопические неустойчивости, при возникновении и развитии которых распределение частиц по энергиям перестаёт быть равновесным и потоки частиц и тепла поперек силовых линий резко возрастают по сравнению с их теоретическими значениями. Именно в направлении стабилизации плазменных конфигураций развивались основные исследования магнитных систем, начиная с 1950, и эта работа всё ещё не может считаться полностью завершенной.

Сверхбыстродействующие системы управляемого термоядерного синтеза с инерциальным удержанием. Трудности, связанные с магнитным удержанием плазмы, можно в принципе обойти, если сжигать ядерное горючее за чрезвычайно малые времена, когда нагретое вещество не успевает разлететься из зоны реакции. Согласно критерию Лоусона, полезная энергия при таком способе сжигания может быть получена лишь при очень высокой плотности рабочего вещества. Чтобы избежать ситуации термоядерного взрыва большой мощности, нужно использовать очень малые порции горю-чего, исходное термоядерное топливо должно иметь вид небольших крупи-нок (диаметром 1-2 мм), приготовленных из смеси дейтерия и трития, впры-скиваемых в реактор перед каждым его рабочим тактом. Главная проблема здесь заключается в подведении необходимой энергии для разогрева крупин-ки горючего. Решение этой проблемы возлагается на применение лазерных лучей или интенсивных электронных пучков. Исследования в области управ-ляемого термоядерного синтеза с применением лазерного нагрева были нача-ты в 1964; использование электронных пучков находится на более ранней стадии изучения – здесь выполнены пока сравнительно немногочисленные эксперименты.

Ссылка на основную публикацию
Adblock detector