Эквивалентный двухступенчатый график нагрузки применяется

Эквивалентный двухступенчатый график нагрузки применяется

Выбрать мощность двухтрансформаторной подстанции, суточный график которой приведен на рис. 4.8. Преобразовать реальный график нагрузки в двухступенчатый. Проверить выбранную мощность на аварийную перегрузку.

На основании таблицы 4.2 рассчитать данные для построения суточного зимнего графика полной мощности. Результаты расчета внести в таблицу 5.8.

Данные для построения графика полных нагрузок для зимнего периода

Нагрузки Часы
S,МВА 10,90 10,90 10,90 10,90 10,90 10,90 21,57 26,52 26,52 25,20 21,22 14,81
S,%
Часы
19,67 24,22 22,90 20,61 21,93 24,22 22,90 26,52 25,20 18,35 14,81 14,81

Максимальная нагрузка составит: Smax = 26.52 МВА.

Рис.5.8 –График полной нагрузки зимнего периода

По формуле (1) определяем среднеквадратичную мощность в относительных единицах:

Sср. кВ=0,75

Номинальная мощность трансформатора:

Sном ≥ 0,75·26,52≥ 19.91 МВА

Выбираем два трансформатора ТРДН – 25000/110.

Данная величина откладывается на графике нагрузки (рис.5.8) в процентах от максимальной нагрузки подстанции.

.

Выбранные трансформаторы проверяются на аварийную перегрузку.

Коэффициент начальной загрузки по (3):

;

Коэффициент максимальной нагрузки:

.

По рассчитанным коэффициентам К1, К2 строится двухступенчатый график нагрузок (рис.5.9)

Рис. 5.9 Двухступенчатый график нагрузок

По графику (рис.3.10) при К1 = 0,61 и tп = 13 ч , при эквивалентной температуре +20 0 С находим К2доп = 1.1.

Рис. 5.10 Графики нагрузочной способности трансформаторов с системами охлаждения М и Д при эквивалентной температуре +20 0 С

Так как К2доп > К2, то трансформатор может систематически перегружаться по данному графику. Следовательно мощность трансформатора выбрана правильно.

6 Выбор места расположения главной понизительной подстанции.

Центр энергетических нагрузок

Для определения места расположения ГПП находится центр электрических нагрузок (ЦЭН) завода.

Координаты ЦЭН определяются по формулам:

(5.1)

(5.2)

где: xi, yi — координаты ЦЭН i-того цеха;

Ррi — расчётная нагрузка i-того цеха.

Для остальных цехов расчёты проведём аналогично. Полученные результаты сводятся в таблицу 6.1.

Таблица 6.1 — Расчётные данные для определения ЦЭН

№ цеха Наименование цеха Ppi, кВт Xi, м Yi, м Ppi х Xi Ppi х Yi
Силовая нагрузка 0.4 кВ
Цех станкостроения
Инструментальный цех
Электроремонтный цех
Цех плашек
Цех метчиков
Цех резьбонарезных головок
Склад готовой продукции
Столовая
Гараж
Заводоуправление
Проходная
Лаборатория
Электроремонтный цех
Котельная
Насосная станция
Компресорная станция
Литейный цех
Пожарное депо
Склад топлива
Бытовые помещения
Силовая нагрузка 6 кВ
Насосная станция
Компресорная станция
Итого
Xo 386,9648
Yo 450,6463

Центр электрических нагрузок:

Центр электрических нагрузок по конструктивным соображениям переносим в другое положение, удовлетворяющее условиям.

Картограмма нагрузок

Для наглядного представления о размещении нагрузок на генеральном плане предприятия строят картограмму нагрузок.

Картограмма нагрузок представляет собой размещённые по генеральному плану предприятия окружности, причём площади, ограниченные этими окружностями, в выбранном масштабе равны расчётным нагрузкам цехов.

С учётом размеров территории генплана выбирается масштаб нагрузок, ориентируясь на наибольшую и наименьшую нагрузку, приняв удобный радиус.

Определяется радиус окружности активных нагрузок для цеха по формуле:

(6.3)

где: Ррi — расчётная активная нагрузка i-того цеха, кВт;

m — масштаб для картограммы, кВт/см.

где: Ррм=4908 кВт — цех с наибольшей нагрузкой;

3.2.1 О пользовании руководством

Для того, чтобы пользоваться рисунками и таблицами, приведенными в 1.4 и 3.5, необходимо преобразовать суточный график нагрузки в упрощенный двухступенчатый в соответствии с рисунком 4. К1 и К2 — ступени нагрузки, где К2 — максимум нагрузки. Продолжительность максимума нагрузки — t часов. Методы определения этой продолжительности для прямоугольного графика нагрузки зависят от некоторых факторов; в 3.2.2, 3.2.3 и 3.2.4 приведены рекомендуемые методы для различных видов реальных графиков нагрузки.

Если эквивалентность двухступенчатого графика нагрузки вызывает сомнение, следует сделать несколько допущений и принять график с наибольшим запасом.

Пример упрощенного применения руководства по нагрузке силовых масляных трансформаторов приведено в приложении Е.

Рисунок 4- Эквивалентный двухступенчатый график нагрузки

3.2.2 График нагрузки с одним максимумом

В этом случае значение t следует определять, как показано на рисунке 5.

Для участка графика нагрузки без максимума значение К1 определяют как среднее значение нагрузки без максимума.

Рисунок 5 — График нагрузки с одним максимумом

3.2.3 График нагрузки с двумя максимумами равной амплитуды, но различной продолжительности

При двух максимумах примерно равной амплитуды, но различной продолжительности значение t определяют для максимума большей продолжительности, а значение К1 должно соответствовать среднему значению оставшейся нагрузки.

Пример графика нагрузки представлен на рисунке 6.

Рисунок 6 — График нагрузки с двумя максимумами равной амплитуды и различной продолжительности

3.2.4 График нагрузки с последовательными максимумами

Если график нагрузки состоит из нескольких последовательных максимумов, значение t принимают достаточной продолжительности, чтобы охватить все максимумы, а значение К1 должно соответствовать среднему значению оставшейся нагрузки, как показано на рисунке 7.

Рисунок 7 — График нагрузки с последовательными максимумами

Если ток нагрузки в течение некоторого времени значительно не изменяется, допускается использовать постоянный эквивалентный ток нагрузки. Значения приемлемого коэффициента нагрузки К = К24 для продолжительного режима при различных температурах охлаждающей среды приведены в таблице 6.

Допустимый коэффициент нагрузки для продолжительного режима K24 при различных температурах охлаждающей среды (охлаждение ONAN, ON, OF и OD)

ТРАНСФОРМАТОРЫ СИЛОВЫЕ МАСЛЯНЫЕ ОБЩЕГО НАЗНАЧЕНИЯ

General-purpose oil-immersed power transformers. Permissible loads

МКС 29.180
ОКСТУ 34 1100

Дата введения 1985-07-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР

РАЗРАБОТЧИКИ

И.Д.Воеводин, О.И.Сисуненко, Б.С.Тимченко

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 31.01.85 N 236

4. Стандарт полностью соответствует СТ СЭВ 3916-82 и публикации МЭК 354-72*

Читайте также:  Газовый котел navien deluxe coaxial 24k инструкция

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Вводная часть, приложение 4

6. Ограничение срока действия снято Постановлением Комитета стандартизации и метрологии СССР от 27.06.91 N 1076 (ИУС 10-91)

7. Издание (июнь 2009 г.) с Изменением N 1, утвержденным в феврале 1988 г. (ИУС 5-88)

Настоящий стандарт устанавливает допустимые нагрузки силовых масляных трансформаторов общего назначения мощностью до 100000 кВА включительно с видами охлаждения М, Д, ДЦ и Ц, соответствующие ГОСТ 11677.

Стандарт не распространяется на трансформаторы с направленным потоком масла в обмотках.

Стандарт устанавливает метод расчета допустимых систематических нагрузок и аварийных перегрузок по задаваемым исходным данным, а также нормы таких нагрузок и перегрузок для суточного графика нагрузки трансформаторов с учетом температуры охлаждающей среды.

Стандарт соответствует СТ СЭВ 3916-82 в части метода расчета допустимых нагрузок и перегрузок трансформаторов и Публикации МЭК 354 (1972) в части метода расчета допустимых нагрузок и перегрузок трансформаторов по суточным двухступенчатым прямоугольным графикам нагрузки.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Значение и продолжительность допустимых нагрузок и перегрузок трансформаторов, а также расчетный износ витковой изоляции обмоток при аварийных перегрузках следует определять для прямоугольных двухступенчатых или многоступенчатых графиков нагрузки, в которые необходимо преобразовать исходные графики нагрузки в соответствии с приложением 1.

Параметры исходного графика нагрузки определяются по данным средств измерений, которыми оснащены трансформаторы, либо по результатам периодических измерений, предусмотренных "Правилами технической эксплуатации электрических станций и сетей".

Нагрузка трансформатора свыше его номинальной мощности допускается только при исправной и полностью включенной системе охлаждения трансформатора.

1.2. Допустимые систематические нагрузки не вызывают сокращения нормируемого срока службы трансформатора, так как за продолжительность графика нагрузки обеспечивается нормальный или пониженный против нормального расчетный износ изоляции.

1.3. Допустимые аварийные перегрузки вызывают повышенный по сравнению с нормальным расчетный износ витковой изоляции, что может привести к сокращению нормированного срока службы трансформатора, если повышенный износ впоследствии не компенсирован нагрузками с износом витковой изоляции ниже нормального.

1.4. При определении допустимых систематических нагрузок температуру охлаждающей среды за продолжительность графика нагрузки или за весь период повторения графика следует принимать равной среднему значению, если при этом температура положительна и ее изменение не превышает 12°С. При изменении температуры охлаждающей среды, превышающем 12°С, или при отрицательных значениях температуры охлаждающего воздуха необходимо использовать эквивалентное значение температуры, рассчитываемое в соответствии с приложением 2.

При определении допустимых аварийных перегрузок температуру охлаждающей среды принимают по ее измеренным значениям во время возникновения аварийной перегрузки. Допускается при проектировании систем электроснабжения промышленных предприятий и других объектов выбирать мощность трансформаторов по условиям аварийных перегрузок по табл.2 приложения 3. Нормы, указанные в табл.2 приложения 3, определены для предшествующей нагрузки, не превышающей 0,8 от номинальной.

1.5. При неравномерной нагрузке трансформатора по фазам допустимые нагрузки и перегрузки следует определять для наиболее нагруженной фазы обмотки.

1.6. Для трехобмоточных трансформаторов допустимые нагрузки и перегрузки следует определять для наиболее нагруженной обмотки.

1.7. Допустимые нагрузки и перегрузки трансформаторов с видом охлаждения Д при отключенных вентиляторах следует определять, исходя из номинальной мощности таких трансформаторов с видом охлаждения М.

1.8. Для трансформаторов с расщепленной обмоткой допускаются те же перегрузки, отнесенные к номинальной мощности каждой ветви, что и для трансформаторов с нерасщепленной обмоткой. Допускаются дополнительные перегрузки одной ветви за счет недогрузки другой, если об этом имеются указания в технической документации.

1.9. Допустимые систематические нагрузки и аварийные перегрузки, как и износ витковой изоляции при аварийных перегрузках трансформаторов, для суточного двухступенчатого прямоугольного графика нагрузки следует определять по табл.1-16 и табл.1-19 приложения 8.

При необходимости определения максимальных допустимых нагрузок и перегрузок с повышенной точностью по измеренным значениям параметров трансформатора, а также при суточных повторяющихся двухступенчатых графиках с продолжительностью максимума нагрузки свыше 12 ч или при графиках нагрузки с циклом повторения, не равным суткам, как и при всех видах многоступенчатых графиков нагрузки, следует пользоваться методом расчета, приведенным в разд.2. В случае определения максимально допустимых аварийных перегрузок расчетом необходимо дополнительно учитывать требования п.4.5.

(Измененная редакция, Изм. N 1).

1.10. Допускается использование норм допустимых нагрузок и перегрузок, отличающихся от указанных в п.1.9, но при обязательном условии, чтобы в этих нормах значения допустимых перегрузок и их продолжительности при прочих равных условиях не превышали бы значений, полученных расчетом по методу, приведенному в разд.2, с использованием при этом одних и тех же исходных данных и ограничений. Пример таких норм приведен в приложении 3.

При выборе мощности трансформаторов систем электроснабжения промышленных предприятий и других объектов допускается использование норм допустимых перегрузок по табл.2 приложения 3.

1.11. Максимальные значения допустимых нагрузок и перегрузок, рассчитываемых для обмоток трансформаторов, не должны ограничиваться нагрузочными характеристиками таких комплектующих трансформаторы изделий, как вводы, устройства переключения отводов обмоток, встроенных трансформаторов тока и измерителей температуры масла.

2. РАСЧЕТ ДОПУСТИМЫХ НАГРУЗОК, ПЕРЕГРУЗОК И ИЗНОСА ВИТКОВОЙ ИЗОЛЯЦИИ ОБМОТОК

2.1. Исходные данные для расчета и их условные обозначения

2.1.1. Исходные данные номинального режима:

— мощность, кВА;

— ток, А;

— потери короткого замыкания, Вт;

— потери холостого хода, Вт;

— отношение потерь короткого замыкания к потерям холостого хода;

Читайте также:  Сантехническая нить тангит унилок цена

— превышение температуры масла в верхних слоях над температурой охлаждающей среды, °С;

— превышение температуры наиболее нагретой точки обмотки над температурой охлаждающей среды, °С;

— превышение температуры наиболее нагретой точки обмотки над температурой масла в верхних слоях, °С;

— тепловая постоянная времени трансформатора, ч, при неизвестном ее значении допускается принимать по приложению 4;

— тепловая постоянная времени обмотки, ч.

2.1.2. Определяемые и другие принятые данные для расчета допустимых нагрузок и перегрузок:

— температура охлаждающей среды, °С;

— температура наиболее нагретой точки обмотки, °С;

— температура масла в верхних слоях, °С;

— превышение температуры наиболее нагретой точки обмотки над температурой охлаждающей среды, °С;

— превышение температуры масла в верхних слоях над температурой охлаждающей среды, °С;

— превышение температуры наиболее нагретой точки обмотки над температурой масла в верхних слоях, °С;

— мощность нагрузки, кВА; определяется в соответствии с приложением 1;

— ток нагрузки, А; определяется в соответствии с приложением 1;

— начальная нагрузка, предшествующая нагрузке или перегрузке , или нагрузка после снижения , в долях номинальной мощности или номинального тока; определяется в соответствии с приложением 1;

— подстрочный индекс, обозначающий установившееся значение величины при нагрузке ;

— нагрузка или перегрузка, следующая за начальной нагрузкой , в долях номинальной мощности или номинального тока, определяется в соответствии с приложением 1;

— подстрочный индекс, обозначающий установившееся значение величины при нагрузке или перегрузке ;

— продолжительность графика нагрузки в единицах времени; для суточного графика, ч;

— продолжительность нагрузки на двухступенчатом суточном графике нагрузки, ч, или подстрочный индекс, обозначающий значение величины в момент окончания продолжительности ;

— интервал времени на продолжительности графика нагрузки, в единицах времени; для суточных графиков нагрузки, ч, или подстрочный индекс, обозначающий величину в момент окончания интервала времени ;

— мгновенное значение времени на продолжительности графика нагрузки, в единицах времени; для суточных графиков нагрузки, ч, или подстрочный индекс, обозначающий значение величины в данный момент времени;

— функциональная зависимость величины от времени;

— подстрочный индекс, обозначающий порядковый номер в числовом ряде величин;

2,718 — основание натуральных логарифмов.

2.1.3. Исходные данные к расчету износа витковой изоляции и ограничения допустимых нагрузок и перегрузок:

— базовая условно постоянная температура наиболее нагретой точки обмотки, при которой скорость расчетного износа витковой изоляции соответствует сроку службы трансформатора, условно принятому за единицу, °С;

для витковой изоляции класса нагревостойкости А 98°С;

— максимально допустимое значение температуры наиболее нагретой точки обмотки:

для систематических нагрузок — 140°С,

для аварийных перегрузок трансформаторов классов напряжения 110 кВ и ниже — 160°С,

для трансформаторов напряжения свыше 110 кВ — 140°С;

— максимально допустимые температуры масла в верхних слоях:

для систематических нагрузок — 95°С,

для аварийных перегрузок — 115°С;

— максимальная величина перегрузки:

для допустимых систематических нагрузок — 1,5,

для допустимых аварийных перегрузок — 2,0;

— температурный интервал, при изменении на который температуры наиболее нагретой точки обмотки расчетный износ витковой изоляции изменяется в два раза; принимать 6 °C, если нет других значений, определяемых из характеристик витковой изоляции "температура — срок службы";

— относительный расчетный износ витковой изоляции, как отношение износа при температуре наиболее нагретой точки обмотки за принятый промежуток времени к нормальному износу при базовой температуре за этот же промежуток времени, в единицах "нормального износа"; для суточного графика нагрузки — в "нормальных сутках" износа.

Единица "нормального износа" — износ витковой изоляции обмотки за принятое время при неизменной температуре проводника обмотки 98°С.

2.2. Схемы распределения температуры

2.2.1. При расчете следует принимать упрощенную схему распределения температуры (черт.1), в которой приняты допущения.

Упрощенная схема распределения температуры масла и обмотки по высоте обмотки

— линейный размер по вертикали бака и обмотки; — превышение температуры; 1 — охлаждающая среда; 2 — изменение температуры масла в баке по высоте обмотки; 3 — изменение средней температуры частей (катушек) обмотки по ее высоте; 4 — наиболее нагретая точка обмотки

2.2.1.1. Температура масла изменяется линейно по высоте обмотки и не изменяется в верхней части бака.

2.2.1.2. Среднее превышение температуры участков винтовой или цилиндрической обмотки по условным их горизонтальным сечениям или по отдельным катушкам катушечной обмотки изменяется линейно по высоте обмотки и параллельно принятому изменению температуры масла.

2.2.1.3. Наиболее нагретая точка обмотки может быть расположена на различном расстоянии от верхнего края обмотки.

2.2.2. При расчете следует принимать упрощенную схему изменения превышений температуры масла и обмоток для двухступенчатого прямоугольного графика нагрузки по черт.2, который содержит допущения.

2.2.2.1. Температура охлаждающей среды за продолжительность графика нагрузки или в течение перегрузки принимается условно постоянной, в соответствии с п.1.4.

2.2.2.2. Температура наиболее нагретой точки обмотки в каждый момент времени определяется, как сумма трех составляющих

т.е. допускается, что превышения температуры и независимы от температуры охлаждающей среды в интервале ее изменения от 40 до минус 20°С.

2.2.2.3. При нагрузках и перегрузках продолжительностью 0,5 ч и более не учитывается переходный процесс изменения температуры обмотки при ступенчатом изменении нагрузки, т.е. при этом тепловая постоянная времени обмотки не учитывается, а принимается, что температура обмотки при изменениях нагрузки мгновенно достигает нового установившегося значения и далее изменяется аналогично изменению температуры масла.

2.2.2.4. При расчете не учитывается изменение сопротивления обмоток, теплоемкости и вязкости масла с повышением температуры, вследствие практически приемлемой компенсации взаимного их влияния на температуру обмоток.

Читайте также:  Нормы расхода материалов в строительстве отделочные работы

2.2.3. При кратковременных нагрузках и перегрузках продолжительностью менее 0,5 ч и при интервалах между перегрузками менее 4 температуру обмотки необходимо определять с учетом .

2.2.4. Изменения температуры в переходных тепловых процессах, т.е. при учете тепловых постоянных времени, принимать протекающими по экспоненциальному закону, а допустимые установившиеся значения температуры при этом достигаются за промежуток времени, равный четырем тепловым постоянным времени.

(Измененная редакция, Изм. N 1).

Изменения температуры масла и обмотки, соответствующие двухступенчатому прямоугольному графику нагрузки трансформатора

2.2.5. Если график нагрузки является многоступенчатым, то его следует разбить на участки с двухступенчатой или одноступенчатой нагрузкой. Расчет в этом случае проводится последовательно для каждого участка; при этом каждая предыдущая нагрузка является начальной для следующего участка графика и т.д.; в соответствии с черт.2 приложения 1.

2.3. Расчет температуры наиболее нагретой точки обмотки

2.3.1. Температуру наиболее нагретой точки обмотки в установившемся тепловом режиме (при нагрузках или ) следует рассчитывать по формулам:

где — значения нагрузок.

Если неизвестны другие значения, то принимать:

0,9 и 1,6 — для трансформаторов с видами охлаждения М и Д;

1,0 и 1,8 — для трансформаторов с видами охлаждения ДЦ и Ц.

2.3.2. Температуру наиболее нагретой точки обмотки в переходном тепловом режиме нагрева при продолжительности нагрузки 4 0,5 ч следует рассчитывать по формулам:

2.3.3. Температуру наиболее нагретой точки обмотки в переходном тепловом режиме нагрева при продолжительности нагрузки 0,5 ч рассчитывать по формулам:

где — по формуле (6).

2.3.4. Температуру наиболее нагретой точки обмотки в переходном тепловом режиме снижения температуры при длительности снижения 4 следует рассчитывать по формулам:

2.3.5. Температуру наиболее нагретой точки обмотки в переходном тепловом режиме снижения температуры при длительности снижения следует рассчитывать по формулам:

где — по формуле (11).

2.3.6. Предварительное приближенное (без выполнения расчетов) определение превышения температуры наиболее нагретой точки обмотки при различных нагрузках и 0,5 ч двухступенчатого суточного графика нагрузки допускается производить по графикам приложения 5.

2.4. Расчет относительного износа витковой изоляции

2.4.1. Относительный износ витковой изоляции необходимо рассчитывать по каждому из участков преобразованного в прямоугольную форму графика нагрузки, каждый продолжительностью , как показано на черт.2 приложения 1. Затем по каждому интервалу следует рассчитать по формулам (2-14), где и заменить значениями .

Относительный расчетный износ витковой изоляции по каждому участку графика необходимо определять по формуле

Относительный износ за продолжительность графика нагрузки будет равен сумме относительных износов по всем участкам:

2.4.2. Относительный износ витковой изоляции допускается также определять по всему графику продолжительностью . В этом случае график также необходимо разделить на интервалов . Участки графика с неизменным значением принимают за один интервал. Участки графика с изменяющимся значением по экспоненте (неустановившийся режим при ) необходимо разделить на интервалы, руководствуясь правилом: продолжительность первого и второго интервалов от начала экспоненты не должны превышать 0,3 каждый, третьего и четвертого интервала — не более каждый, продолжительности последующих интервалов не ограничиваются. В каждом интервале следует провести линии среднего значения , а затем по каждому интервалу графика рассчитывать относительный износ по формуле

Относительный износ за продолжительность графика нагрузки следует определять по формуле (16).

2.4.3. Относительный износ витковой изоляции для суточного двухступенчатого прямоугольного графика нагрузки с продолжительностью максимальной нагрузки в интервале ч следует определять как сумму относительных износов по трем характерным участкам графика изменения температуры (см. черт.2) — с установившейся температурой, с повышением и снижением температуры

где и — повышение и снижение температуры наиболее нагретой точки обмотки, выражаемые формулами (5-7) и (10-12), но не для конечных значений интервалов времени и , а как функция их непрерывного изменения в этих интервалах.

2.4.4. Пример расчета и (без применения ЭВМ) приведен в справочном приложении 6.

2.5. Расчет допустимых нагрузок и перегрузок

2.5.1. Расчет максимальных допустимых нагрузок и перегрузок проводится в двух случаях:

с целью проверки допустимости предполагаемого графика нагрузки;

с целью определения возможных вариантов двухступенчатых суточных графиков нагрузки с максимальными при различных значениях и .

2.5.2. Расчетную проверку допустимости любого преобразованного в прямоугольную форму заданного графика нагрузки необходимо выполнять по формулам (15-18) расчета относительного износа витковой изоляции.

2.5.2.1. Графики нагрузки, при которых 1 и не превышаются соответствующие ограничения по п.2.1.3, следует относить к графикам допустимых систематических нагрузок.

2.5.2.2. Графики нагрузки, при которых 1 и не превышаются соответствующие ограничения по п.2.1.3, следует относить к графикам допустимых аварийных перегрузок.

2.5.3. Расчет максимальных допустимых систематических нагрузок и аварийных перегрузок двухступенчатого суточного графика нагрузки необходимо выполнять итерационным методом, определяя по формулам (2-4), (5-7), (10-12) и равенства (18). Такой расчет следует выполнять на ЭВМ в соответствии с блок-схемами приложения 7.

(Измененная редакция, Изм. N 1).

2.5.4. Предварительное приближенное (без выполнения расчетов) определение допустимых двухступенчатого суточного графика нагрузки с учетом ограничений по п.2.1.3, но без определения относительного износа витковой изоляции, допускается проводить по графикам приложения 5. По найденным из графиков значениям превышений температуры , и принятому или рассчитанному в соответствии с приложением 2 значению следует определять:

а затем проверить соблюдение условий и .

3. НОРМЫ МАКСИМАЛЬНО ДОПУСТИМЫХ СИСТЕМАТИЧЕСКИХ НАГРУЗОК ТРАНСФОРМАТОРОВ

3. НОРМЫ МАКСИМАЛЬНЫХ ДОПУСТИМЫХ СИСТЕМАТИЧЕСКИХ НАГРУЗОК ТРАНСФОРМАТОРОВ

3.1. В табл.1-7 приведены значения и для суточного двухступенчатого графика нагрузки трансформаторов при различных значениях и , рассчитанные в соответствии с приложением 7.

Ссылка на основную публикацию
Adblock detector